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In this paper we consider the problem of the unsteady one-dimensional expansion of an 
initially uniform source gas into a non-uniform low density ambient atmosphere. We 
make a numerical study of the finite time solution of the contact front-primary shock 
regime using a particle path formulation of the characteristic equations of inviscid gas 
dynamics. The numerical method employed is a slightly modified version of that due to 
Hartree and we compare our results with the known asymptotic solutions. 

1. INTRODUCTION 

This paper presents a numerical study of the problem considered in [l, 21. We 
consider a uniform source gas initially at rest within r = 1, in non-dimensional units, 
and surrounded by a stationary non-uniform atmosphere of lower density and sound 
speed. At time t = 0 the equalisation process is allowed to commence and the 
subsequent flow is studied from the viewpoint of inviscid gas dynamics. 

A contact front separates the two gases and drives the primary shock ahead of it 
whilst, in general, a secondary shock forms behind the contact front. In the limiting 
case, the one discussed here, of the atmospheric density and sound speed being much 
lower initially than those of the source gas, the contact front moves, to a first approxi- 
mation, with a speed equal to that of the gas-vacuum interface in the expansion in 
macro. Tt has been shown in [3] that this speed is independent of the one-dimensional 
geometry and it takes the value unity in our non-dimensional units of the next section. 
Because we have this simple boundary condition on the contact front, it is possible 
to consider the contact front-primary shock regime alone where the problem is now 
well-posed. For further details of the background to the problem, the reader is 
referred to [ 1 ]. 

The aim of this paper is to indicate how we numerically solve this problem for 
finite time and to compare sample numerical results with the asymptotic analysis of 
[l, 21. 

The one-dimensional Eulerian equations are transformed using the particle path 
function so that both boundaries, the contact front and the shock, become known a 
priori. Two coordinate systems are used eventually and the solution of the equations 
is initiated by a “small time” perturbation scheme. The numerical method is a slightly 
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modified version of the Specified Time Intervals or Backward Drawn Characteristics, 
devised by Hartree [43. Hartree’s method is described in Section 3 and it amounts to 
choosing a new mesh point and constructing the characteristic lines back to an 
earlier “time” where information on the dependent variables is known. This is in 
contrast to the more conventional method where one constructs characteristic lines 
from current mesh points forward to their point of intersection on a later “time” 
thereby producing, in general, a non-uniform mesh. 

2. THE CHARACTERISTIC EQUATIONS AND BOUNDARY CONDITIONS 

All units used henceforth have been non-dimensionalised as in [l]. The nomen- 
clature is such that U, p, p, a are respectively the gas velocity, pressure, density and 
sound speed with a2 = yp/p. The ratio of specific heats, y, is assumed constant and (2, 
the geometry index, takes the values 0, 1, 2 respectively for plane, cylindrical and 
spherical symmetry. In addition r is the spatial coordinate, t is the time and V,(r) is the 
unknown shock velocity. The atmospheric density ahead of the shock is equal to r-k, 
where k is some non-negative constant. 

The starting point here is the familiar Eulerian equations in characteristic form, 
e.g., see [5], 

dp & pa du + apua2 dt/r = 0 on g = (u f 4, 

d(pp-y) = 0 on $ = u 

(2.1) 

with 

u=l on r=l+t 

and the Rankine-Hugoniot shock relations 

u = 2V,(r)/(y + 0, 

p = 2V12(r)r-“/(y + 11, 

p = (y + l)r-“l(y - 1) 

on r = r,(t) where dr,/dt = k;(r,), r,(O) = 1. 
We now introduce the particle path function # through 

(2.2) 

(2.3) 

a* ar = Pro, a* -= at -pur” 
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and define further variables by 

# = (u + 1 - k)$, 
ZZ *2 

(k - u - 1># 
= 1 -(k-u- l)$ ’ 

y = y lo+l--l;l - 1) 

= log, r, 

e = 4/Y, 

p = i%y + 1) r-kp, P = (Y + W”R/b 

Using these new variables Eqs. (2.1) become 

- 

k < (0 + 11, 
k = (u + I), 

k > (0 + 11, 

k f (0 + I), 
k = (0 + 11, 

112 V,(r) = i-(y + 1) V(r). 

.- 2 -. v - dP zt -Radu+yP[&-k/y]&=” 
(Y- 1) 

(2.4) 

6 - l)(u f 4 ’ 

on 

d[PR-rf(y)] = 0 on $ = 0 or $ = - z , (2.5) 

where 

D(Y) = I u + 1 - k I (1 + Y), 
= 1, 

GAY) = 1, 

k f (u + I), 

k = (0 + 11, 

k < (0 + 11, 

= (+)” = (+$$)2, k > (u + I), 

f(y) = (1 + y)k+-l)llo+‘--kl, 

= exp[W - l).vl, 
k # (u + l), 
k = (a + I), 

and aa = $r(r - 1) PR-l. 
The boundary conditions (2.2), (2.3) now become 

u==l on 4 = 8 = 0, 
u = V, P = V2, R = 1 on 4=yorf?=l. 

Also the initial conditions, at 4 = y = 0 or 0 ,( 8 < 1 with y = 0, are the locally 
plane solutions with k = 0, i.e., u = P = R = V = 1, and the region of integration 
is 0 < 4 < y or 0 < 0 < 1, 0 < y < a~ It should be understood that (4, y) and 
(0, y) are alternative coordinate systems. 
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It is clear that the shock boundary is now known a priori and it is in fact a straight 
line in both coordinate systems. This fact reduces by one the number of approxi- 
mations necessary in the subsequent discretisation. 

3. NUMERICAL METHOD AND STABILITY CONSIDERATIONS 

In this section we outline the numerical method as applied to the problem under 
discussion. For small y the characteristic curves in the (0, JJ) coordinate system are 
almost parallel to the 8 axis and initially a large value of de would be needed for 
efficient integration. This value of AL? would be inappropriate for larger values of y 
and we overcome the difficulty by commencing the numerical integration in the 
(4, y) system. This system has, as we shall see, an inbuilt facility for systematically 
increasing the number of mesh points and thus effectively reducing the size of de. 
This facility is provided by the sloping shock boundary and we indicate later how it is 
used. 

The advantage of Hartree’s method is that it automatically produces solutions 
on a regular mesh, thereby dispensing with the need to store the coordinates of the 
mesh points in the computer memory. For a point neither too near nor on either 
boundary, Hartree’s method is illustrated in Fig. 1 where 7 represents either 4 or 8. 

To-A7 70 -toeAt 

FIG. 1. Standard method. 

Given values of the gas variables at points along the line y = y, we wish to find 
values at points on y = y,, + dy. Consider a typical mesh point, point 3 in Fig. 1, 
on y = y, + dy. We construct the three characteristic curves from this point back to 
the line y = y0 and apply the relevant compatibility condition along each characteristic 
curve. This cannot be done exactly but we carry it out approximately by applying a 
differencing scheme to the first four of equations (2.4); the first two of (2.5) are 
integrable. In this scheme we replace the differential of a quantity by the difference 
of its values at each end of the relevant characteristic and each coefficient by the mean 
of its values at each end of this characteristic. Second order interpolation is used to 
find values on y = y, in the interval do - A + < #I < #+, + A 4. Here & = & = &. 
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We illustrate the differencing approximation by considering the equations in the 
(4, JJ) system. The first two of (2.4) are approximated by 

(P3 - P2) + & (Ru}2,& - 242) + y yuu”yy; - k’y112 3 (Y3 - Y2) = 0, 

(P, - P,) - & (R&,&4, - UJ + y [p[uu’(u ;(;; - k’y111,3 (Y3 - J-1) = 0. 

where {X}i,3 = $(Xi + X,>, i = 1,2. 
Rearranging, these become 

The second pair of (2.4), i.e., the equations for the characteristic curves in ($, JJ) 
space, are approximated by 

(4, - $2) = p&) [RauE;1”12 3 (Y3 - Y2h 

(4, - #J = - (~)!Ryy4;y)/1 3 (Y3 - Yl). 
(3.2) 

The first two of (2.5) are integrated to give P3rj(y3) = P,R;“‘(yJ, i.e., 

(3.3) 

With this last result, (3.3) becomes 

R, = R3(P3/P5)“‘[f(y3)lf(~,)I~‘~. (3.4) 

In addition we still have a = $y(y - I)P/R. (3.5) 

Equations (3.1) and (3.2) comprise a set of four non-linear algebraic equations in 
the four unknowns P3, u3, C& , &. Equations (3.4) and (3.5) are used as straight- 
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forward formulae and the six values P, , P, , u1 , u2 , R, , R, are approximately by 
Lagrangian interpolation, e.g., 

Equations (3.1), (3.2) could be solved by a standard quasi-Newton (superlinear) 
iterative method but it was found that a linear iterative scheme was more efficient in 
terms of computer time. This linear iterative method is as follows: Equations (3.1) 
are regarded as 2 simultaneous “linear” algebraic equations in P, and us: 

Pa + Alu3 = B1, 

P, - A,u, = B, , 

where 

etc., the “solutions” of which are 

P, = (44 + A,B,)I(A, i- Ad, 

~3 = (4 - W(A, + Ad. 
(3.7) 

In A,, A,, B, , B, the current estimates for P3 , u3 , etc., are used, (3.7) then 
provides new estimates for P3 , u3 . Equations (3.2) are rewritten as 

(3.8) 

In the right-hand sides of (3.8) the current estimates of the unknowns are used and 
then the resulting values q& and & are new estimates for & and q51 . 

Equations (3.7) and (3.8) together with the supporting “formulae” (3.4), (3.9, (3.6) 
comprise the linear iterative method. The sequence of calculation is: (3.4), a, from 
(3.9, (3.8), interpolation as in (3.6), and then (3.7). The values P3, u3, R, are of prime 
consideration, the values $1 , 4%) etc., are incidental. The iteration commences with 
the initial estimates: P, for PI , P, , P3 ; u5 for u1 , uz , u, ; R, for R, , R, , R, ; 
+3 for & , and qL . It ends when a sufficiently accurate solution to the algebraic 
equations is obtained. 

The method is entirely similar in the (0, JJ) coordinate system, only the resulting 
algebraic equations are slightly different. 
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When obtaining values at points on $ = 8 = 0 only the negative characteristic 
and the streamline are used since we have the boundary condition u = 1. For points 
on 4 = y, 0 = 1 only the positive characteristic is used since we effectively have two 
boundary conditions in R = 1, P = u2 = V 2. Clearly the number of algebraic 
equations is reduced in each case. 

In the (4, y) coordinate system the range of $ increases as we progress with the 
integration. This allows us to systematically increase the number of mesh points on 
lines of constant y. The size of dy is restricted by stability conditions as we see later, 
and it is chosen so that d+/dy is an integer, M, say. Suppose that we have the 
numerical solution at K + I equispaced points on y = K d 4, where K is some integer. 
On the next line, i.e., JJ = K A 4 + dy, the point which was on the shock for y = K A$ 
is now a distance dy from the shock and we introduce a new point on the shock at 
4=y=Kd$+dy. 

We systematically increase y by dy, solving the algebraic equations each time, and 
the distance between the points on and adjacent to the shock increases until 
y=(K+l)d$, h w ere we now have K + 2 equispaced points. The difficulty that 
may arise here is that, for the intermediate values of y, the negative characteristic 
curve from the point next to the shock may intersect the previous line of constant y 
at a value of 4 which is greater than the value of y, i.e., outside the region of inte- 
gration. If this were the case we would have to extrapolate to find values of the gas 
variables at the bottom of this characteristic, a state of affairs likely to induce in- 
stability, and we prevent this from happening by modifying Hartree’s method. 

FIG. 2. Method modified for boundary. 

Figure 2 illustrates the way in which we introduce the additional mesh point on the 
shock, point 8, and it also assists in our description of the modified method. We 
construct a shorter negative characteristic curve as shown and apply the negative 
compatibility condition between point 3 and point 1 which now lies on the shock 
boundary, 4 = y. Whether this negative characteristic reaches the shock first or not is 
determined by approximately solving a locally linearised version of the equation of 
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this curve. In addition values a point 1 are now found by Lagrangan interpolation 
using values at points 7, 6, and 8. 

When integrating in the (0, y) coordinate system no such difficulties arise and we use 
the standard method only. 

The stability condition used is the Courant-Friedrichs-Lewy condition and this 
condition, if fulfilled, ensures that, away from sloping boundaries, extrapolation is 
avoided. For the problem under discussion this condition can be stated as 

where T represents either 4 or 19 and c1 is the average value of 1 &/A- 1 between the 
end points of a negative characteristic curve. To set an upper limit on dy initially, 
near y = 0, we use the locally plane solution which implies 

In particular for y = 7/5, 5/3 this gives /3 < 0.148, 0.085, respectively, and we then 
use p = l/8, l/16 to give dy initially for a particular value of d4. Subsequently 
a check is made on stability at each mesh point by considering the value #Q of #I at 
point 1 in Fig. 1. If +1 > & then dy is too large and we return to y = y, with dy 
replaced by dy/2. This, however, was not found to be necessary in our two sample 
integrations. 

Now that the details of the numerical method have been stated we indicate the 
overall algorithm. To initiate the solution we use the series solution for small y of the 
partial differential equations associated with (2.4), (2.5). These series are developed 
by letting 

u = 1 + yu,(@ + y2u@) + .*., 
P = 1 + yP1(@ + y2P,(B) f --., 

R = 1 + yR,(B) + y2R2(0) + e.0, 

v= 1 +yb,+y%,+*.*. 

The algebraic manipulations are quite straightforward and we illustrate the results up 
to O(y) by considering k < (u + 1): 

u,(e) = all, 

k(e) = 4 - 01, 

plte) = 2ble + I?% - (ukt ;y’k, 1 ti - e)3 
with 

al = (Y - l)W + 1) - 24 
2(2y - l)(o + 1 - k) 
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and 

b, = -(Y - l)W2 - 4Y + 1) + 2vJl 
2(y + 1)(2y - l>(u + 1 - k> * 

The second order terms u2, P, , R, can be obtained and they are quadratic functions 
of 8 but the algebra becomes extremely involved for higher orders. Similar results 
are obtained for k > (0 + 1). 

We use these series solutions up to second order to provide values of u, P, R at 
three equispaced points on y = 244, i.e., at 4 = 0, A$, 244, and V for y = 244 
and then commence the numerical integration. The (4, y) coordinate system is used 
until y = 1 when we change to the (0, v) system with A0 = A$. Since d9 is approxi- 
mately proportional to Ay/y we double Ay at y = 2, 4, 8, etc. until Ay = A0. This 
accelerates the integration but ensures that stability conditions are not violated and 
that the local truncation error is held at O(Ae3). 

4. NUMERICAL RESULTS AND COMPARISON WITH THE ASYMPTOTIC ANALYSIS 

The initial motivation for producing numerical results for our problem was to 
provide a check for the asymptotic theory developed in [I, 21. For this comparison 
it was necessary to produce the numerical solutions accurately and so we choose 
A$ = 0.01. For less critical uses of the numerical results a larger value of A4 could 
be used. 

Even though the integrations were carried out in the particle path coordinate 
systems we display the results in a more physical form so that they may, if necessary, 
be compared with experimental results. Briefly we plot the various results as functions 
of 7, where 

r-l--t 
17= l-,--I--t 

and rs is the physical position (or radius) of the shock at time t. The boundaries 
0 = 0, 1 become r] = 0, 1, respectively, and, as t -+ co, we have 

h-l 
-As-1 for k < k, , 

where h = rt-” is the similarity variable and k, is a critical value of k found in [l, 21. 
In what follows the symbol co is used to label information derived from the 

asymptotic analysis and the suffix s indicates values at the shock. 
Two cases were chosen for numerical investigation and these are now discussed. 
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Case I. In this case we have u = 2, y = 7/5, k = 1 < k, . The variables U, 
P(r/rs)-k, R(r/r,)-L are plotted in Figs. 3-5, the factor r/rs becoming X/As as t -+ 00. 
Values of r, and V, are given in Table I. It can be seen from these results that the flow 
quickly settles down to its asymptotic state and it is worth noting that, in the (0, y) 
coordinate system at about r = 8, the difference between the asymptotic and finite 
time solutions is less than 1 x,. 

TABLE I 

t y, 
--~ ~- ..-- 

0 1 

0.2 1.236 

0.6 1.694 

1.0 2.140 

1.5 2.691 

2.0 3.238 

6.0 7.580 

co m 

VI 

1.2 

1.1655 

1.1253 

1.1079 

1.0965 

1.0910 

1.0838 

I .0832 

0,s 
7 

1.0 

FIG. 3. II vs 7 for Case I. 

Caes II. Now we have a = 2, y = 513, k = 3.5 > k, . Since the shock velocity 
can be expected to increase without bound as t increases, we display the functions u/u, , 
P/P,(r/r&k, R(r/r,)-k in Figs. 6-8, the factor r/r, again becoming A/& as t ---f co. 
Values of rs and V, for this case are given in Table II. It can be seen from these graphs 
that the flow takes quite a long time to settle down to its asymptotic state; the 
reasons for this are given in [l]. 
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FIG. 4. P(r/r,)-k vs 7 for Case I. 

I I 
05 7 1.0 

FIG. 5. R(r/r,)-” vs 7 for Case I. 

0 
0 O5 7 1.0 

FIG. 6. u/us vs 7 for Case II. 
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I 
0.5 y 1.0 

FIG. 7. Pjf,(r;rSY vs 7 for Case II. 

50 - 

O- 
0 O-5 

7_ 
14 

FIG. 8. R(T/~J-~ vs 7 for Case II. 

To compare these solutions further with the asymptotic analysis we fit functions 

of the form CL@ to P on 8 = 0 and V, at large r by regressional analysis to obtain 

P -N 184r-l-51 on 8 = 0, 

V, C? 1.5ir0.*65 

The asymptotic analysis predicts respectively k - y(u + 1) and E = I/@ - l), a 

function of k, y and u, for these two exponents, or - 1.5 and 0.0647 in this case, 
a very good agreement. It can be seen from Figs. 6-8 that, for small r], the finite time 
solutions do not compare favourably with the asymptotic solutions. The reason for 
this is that the asymptotic expansions are no longer valid and then, as shown in [l, 21, 
different series expansions are sought. 



NUMERICAL SOLUTION OF GAS EXPANSION 

TABLE II 

89 

0 1 1.333 
0.1 1.134 1.357 
0.5 1.693 1.430 
1.0 2.425 1.488 
2.0 4.036 1.552 
6.0 10.56 1.71 

20 35.93 1.88 
50 94.45 2.02 

100 198.3 2.12 
400 867.4 2.34 
900 2046 2.47 

1600 3749 2.57 
2500 6000 2.65 
3600 9116 2.72 

In conclusion we have indicated how to numerically solve the problem and we have 
shown that, for the two cases chosen, the finite time solutions do in fact approach 
the forms predicted by the asymptotic analysis of [l, 21. 
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